Ultrasound-Mediated Surface Engineering of Theranostic Magnetic Nanoparticles: An Effective One-Pot Functionalization Process Using Mixed Polymers for siRNA Delivery

نویسندگان

  • Liron L. Israel
  • Emmanuel Lellouche
  • Jean-Marc Grenèche
  • Moshe Bechor
  • Shulamit Michaeli
چکیده

Nano-sized materials have been studied for diverse clinical applications, partly because their size-dependent physical properties and nanometer-scale dimensions have important roles in biological systems. Synergistic combinations of differently nanostructured materials, such as polymer-coated magnetic nanoparticles (NPs), strongly promoted various multifunctional nano-medical platforms for simultaneous diagnosis and therapy in the rapidly emerging area of theranostics. In this context, magnetically responsive Ce cation-doped maghemite (γ-Fe2O3) NPs form a useful NPs basis towards a new type of polycationic polymer/organic species-grafted maghemite NPs for both drug delivery and imaging. The versatility of the Ce cation-doped maghemite NPs fabrication process mediated by high-power ultrasound (US) enables the development of a new one-step time-saving US-driven variant fabrication of corresponding polymer/organic species-grafted NPs. Thus, two types of organic polycationic species, a branched 25 kDa polyethylene imine (b-PEI25) polymer and a generation 2 (G2) PAMAM (poly(amidoamine)) dendrimer biopolymer, were simultaneously used during this US-mediated NPs system fabrication to effectively deliver optimized small interfering RNA (siRNA) applications as a proof of concept. This unique one-step fabrication protocol affords a positively charged magnetic core grafted with mixed organic species nanocomposite particles that enables both gene silencing therapy and magnetic resonance imaging. *Corresponding authors: Jean-Paul Lellouche, Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel, Tel: 972-54-7-258 188; E-mail: [email protected] Shulamit Michaeli, Faculty of Life Sciences and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel, Tel: 972-3-531 83 07; E-mail: [email protected] Received June 13, 2016; Accepted June 16, 2016; Published June 23, 2016 Citation: Israel LL, Lellouche E, Grenèche J, Bechor M, Michaeli S, et al. (2016) Ultrasound-Mediated Surface Engineering of Theranostic Magnetic Nanoparticles: An Effective One-Pot Functionalization Process Using Mixed Polymers for siRNA Delivery. J Nanomed Nanotechnol 7: 385. doi:10.4172/2157-7439.1000385 Copyright: © 2016 Israel LL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent Magnetopolymersomes: A Theranostic Platform to Track Intracellular Delivery

We present a potential theranostic delivery platform based on the amphiphilic diblock copolymer polybutadiene-block-poly (ethylene oxide) combining covalent fluorescent labeling and membrane incorporation of superparamagnetic iron oxide nanoparticles for multimodal imaging. A simple self-assembly and labeling approach to create the fluorescent and magnetic vesicles is described. Cell uptake of ...

متن کامل

Sulfonated Magnetic Nanoparticles as Recyclable Catalyst for Facile One-Pot Green Synthesis of 3,4-Dihydro-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione Derivatives

Sulfonated magnetic nanoparticles (SO3H-Fe3O4@SiO2 MNPs) have been explored as an efficient, cost-effective, and recyclable nanocatalyst for the facile synthesis of 3,4-dihydro-2H-indazolo[1,2-b]phthalazin-1,6,11(13H)-triones through a one-pot three-component reaction between aldehydes, dimedone, and phthalhydrazide under mild and green (solvent-f...

متن کامل

Multifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin

Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring.   Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...

متن کامل

Nanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake

Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...

متن کامل

Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging.

Theranostic magnetic resonance imaging (MRI) is now receiving a growing interest in imaging-guided drug delivery, monitoring the treatment and personalized administration etc. Theranostic agents are essential for the usage of theranostic MRI. Among different kinds of theranostic agents, gadolinium loaded nanoparticles (GdNPs) are one of the most promising theranostic agents which are very promi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016